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Core Guide: Longitudinal Data Analysis 
Part of a series addressing common issues in statistical and epidemiological design and analysis   

 

Background 

In contrast to cross-sectional data, which are collected at a single time point, longitudinal data are 

collected at multiple time points on the same individuals over time. These so called repeated measures 

data may be related to an exposure, or an outcome/event, or both. The primary benefit of collecting 

longitudinal data is the ability to prospectively record the health outcome, as well as to measure an 

exposure that may be associated with this outcome. Longitudinal studies are generally considered 

superior to cross-sectional studies in validly estimating risk; and prospectively measuring an exposure 

will reduce the possibility of misclassification of this exposure that frequently occurs in retrospective 

studies. Furthermore, longitudinal data allow for measurement of changes in outcomes over time within 

a single unit of analysis (e.g., an individual), and can tease apart different types of time-dependent 

effects; namely Age, Period and Cohort effects.  

Longitudinal cohort data usually include a short time series of repeated measured on the same 

unit of analysis (e.g. individuals). This usually consists of many units of analysis with a few 

repeated observations within units. Analysis of longitudinal cohort data are the focus of this 

guide. 

Repeated cross-sectional data consist of repeated measures on different individuals, or other unit 

of analysis, over time. Since repeated measures are on different individuals, we do not expect 

correlation among these measures due to individual characteristics; but we may observe correlation 

due to external factors, such as environmental or other seasonal effects.  

Time series data usually consist of a longer time series on a single (or small number of) individuals, 

or other unit of analysis. With time series analysis, we assume temporal correlation in the response, 

but assume that if observations are far enough apart, they are essentially independent. In analyzing 

time series data, we are often focused on making inference to temporal dynamics within a 

population, such as the pattern and intensity of dengue fever, and less interested in inference to 

individual level risk factors for disease.  

Box A. Differences Between Three Common Structures of Longitudinal data 
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This guide will review the most common longitudinal study designs, as well as the most appropriate 

methods for analyzing the resulting data. Since longitudinal data consist of repeated, and thus, 

correlated, measures on the same individual, or other unit, such as a village, appropriate analyses must 

be considered when analyzing data that exhibit this correlation structure. This guide will summarize 

analytic techniques for handling response correlation and will provide example Stata and SAS analysis 

code. For a more detailed, technical discussion of modeling the correlation structure of longitudinal 

data, see the DGHI Core Guide titled, Correlation Structures in Longitudinal Data Analysis. 

Worked Example 

For the remainder of this guide, we will consider a longitudinal study of HIV-positive pregnant women in 

rural Uganda. The investigators want to determine whether exposure to a new intervention reduces HIV 

viral load among study participants.  To this end, the investigators collect data on the outcome Y (i.e., viral 

load), exposure A (i.e., exposed to the intervention), as well as any other variables of interest, such as time 

period, T, or other covariates, L. Furthermore, the outcome is measured for all study participants at 

baseline and at least one follow-up time point (i.e. it is a longitudinal cohort study). This guide will consider 

several longitudinal study designs that may be used to answer this research question. We will review each 

of the primary designs questions listed in the table below, and discuss their implications for our resulting 

analyses. 

No. Question (Yes/No) 

1a Is there a ‘control’ group in the study – i.e., participants who were not exposed to the 

intervention? 

 

1b If yes, then was the exposure randomized across participants; i.e., is the study 

experimental? 

 

2 Were the same participants measured at each time point?   

3 Is there more than one follow-up time point?  

Pre-test/Post-test – no controls 

The pre-test/post-test (‘pre-post’) design is one of simplest forms of longitudinal studies (Figure 1). The 

study often consists of a single baseline measurement, Yt=0, and is compared to a single follow-up 

measurement, Yt=1, usually occurring after an intervention. Using our worked example, we might wish to 

measure viral load among HIV-positive pregnant women in a rural health facility in Uganda, before and 

after an intervention is initiated aimed at reducing viral load.  
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Figure 1. Schematic depiction of a pre-post study design, no controls. 

Since there is no control group (i.e.., participants who were unexposed to the intervention), the baseline 

measurement is our best estimate of the counterfactual; that is, what would be the value of viral load 

for our study participants at t=1, had they remained unexposed to the intervention. In this design, we 

answer our above key questions in the following way: 

No. Question (Yes/No) 

1a Is there a ‘control’ group in the study – i.e., participants who were not exposed to the 

intervention? 

No 

1b If yes, then was the exposure randomized across participants; i.e., is the study 

experimental? 

n/a 

2 Were the same participants measured at each time point?  Yes 

3 Is there more than one follow-up time point? No 

Statistical analysis 

Our pre-post data could be analyzed by taking the difference in the baseline and follow-up 

measurements and analyzing the resulting data. For example, if our outcome is viral load (i.e. a 

continuous variable, which we assume to follow a Normal distribution), we might test the null 

hypothesis that the mean change in viral load over time is equal to zero. We would difference the two 

values for each study participant, and then run a one-sample T-test to determine whether the observed 

mean CD4 count is different from zero (See Appendix for Stata and SAS code for performing all 

statistical analyses described in this document). Doing so would eliminate any correlation in the 

response since the investigator would have already removed it by differencing the two values, i.e. this 

analytic method is an appropriate method to account for the positive correlation that is expected 

between two outcomes measured on the same individual.  

Alternatively, we could retain both the baseline and follow-up measurements and perform a paired T-

test to determine whether, on average, the difference in the two values is significantly different from 

zero. This paired analysis will give us the exact same result (T-statistic) as the one-sample T-test above. 

In the event that our outcome is binary (e.g., 0/1), we could perform a paired test of categorical data, 

such as a McNemar’s test to test the null hypothesis: is the proportion of participants with the event 

different, comparing the baseline and follow-up time points? For example, in our pre-post – no control 

Intervention 

group 

 

Yt=0 
Intervention Yt=1 

Baseline Follow-up 
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design in HIV+ women, we might be interested in whether the proportion of those women with viral 

suppression (yes/no) is different at baseline and at follow-up. For this analysis, viral load suppression 

would be categorized as 0 or 1, instead of using viral load as a continuous measure as we did for our T-

test. 

Pre-test/Post-test - with controls 

Two important sources of bias that can confound our effect estimate (e.g., mean difference in viral load) 

in a pre-post study are: 1.individual-

level covariates; and 2.time. In the pre-

post study design described above, we 

are able to deal with individual-level 

time-fixed covariates (e.g. gender) as a 

potential confounder, since each 

person acts as their own control. 

However, we are not able to account 

for the potential confounding effects of 

time. To illustrate this, let’s imagine 

that during the same time period that 

we performed our intervention to 

lower viral load among HIV-positive 

pregnant mothers, there was a national 

advertising campaign aimed at 

educating HIV-positive Ugandans on 

the importance of adherence to 

antiretroviral therapy (ART). If we saw a significant decrease in viral load in our study participants over 

the study period, we would not be able to estimate whether this change was due to our study 

intervention, or whether it was due to the national advertising campaign, or some combination of both. 

Said another way, we would not be able to adjust our effect measure for the potential confounding 

effects of time that, in this case, could be due to the advertising campaign. Adding a control group of 

participants who are not exposed to the intervention of interest, and who are followed over the same 

time period as our intervention participants, is likely the best method for reducing the potential 

confounding effect of time (Figure 2). We note that some disciplines classify the “pre-test/post-test – 

with controls” design as a “quasi-experimental” design. For reasons described in Box B, we do not use 

this term to describe any of the designs outlined in the current guide. 

Box B. Use of the term “Quasi-experimental” 

In some research disciplines, the term quasi-experimental 

refers broadly to observational studies where the exposure 

of interest is not randomized, and can include pre-post 

studies with and without controls. Some authors limit use of 

the term to only studies with a control group, while still 

others, particularly in health economics, use the term 

primarily to refer to natural experiments, where through 

some ‘natural’ mechanism, the exposure is pseudo-

randomized in the target population. Epidemiologists do not 

typically use this term and prefer to distinguish 

observational studies by the specific design (e.g., case-

control, cohort, regression discontinuity, etc.). To avoid 

further confusion, we do not use the term quasi-

experimental in this document.  
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Figure 2. Schematic depiction of a pre-post study design, with controls 

 

 

In this design, we answer our key study questions in the following way: 

No. Question (Yes/No) 

1a Is there a ‘control’ group in the study – i.e., participants who were not exposed to the 

intervention? 

Yes 

1b If yes, then was the exposure randomized across participants; i.e., is the study 

experimental? 

No 

2 Were the same participants measured at each time point?  Yes 

3 Is there more than one follow-up time point? No 

Statistical analysis 

So how would our analysis plan differ if we add a control group to our study? Just as we did before, we 

could analyze these data by taking the difference between the pre-post measurements. But instead of 

performing a paired T-test, to determine if the mean pre-post change in response (e.g., viral load) is 

zero, we would perform an unmatched two-sample Student’s T-Test comparing the mean pre-post 

change in response over time between the control and intervention groups. This is called a difference-in-

difference analysis. First, we difference the baseline and follow-up measures for each individual 

(𝑌𝑡=0 − 𝑌𝑡=1 ). Second, we compare the mean difference for intervention and control participants 

( �̅�𝑐𝑜𝑛𝑡𝑟𝑜𝑙−�̅�𝑖𝑛𝑡) by using a two-sample T-test. Since our first differencing is done on the same person, we 

implicitly account for the baseline response for each individual. However, the T-test is unable account 

for any confounding effects, like different age distributions in the two groups, that may be at least partly 

responsible for a difference in mean response across the two groups. In order to account for 

confounding, we would need to model the data using a method, such as linear regression1.  

Van Belle et al. note several ways to model these pre-post longitudinal data using regression methods, 

including: 1. follow-up only; 2. change analysis; and 3. analysis of covariance (ANCOVA)[1]. 

1. Follow-up only models only the follow-up response, ignoring baseline.  

                                                           
1 Generalized linear modeling can be used with very similar parameterization when the response variable is non-
Normal (e.g., binary, count). 

Intervention 

group 
Intervention Yt=1|a=int 

I 

Baseline Follow-up 

Control  

group No intervention 
Yt=0|a=control 

 
Yt=0|a=control

s 

 

Yt=0|a=int 
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Yi1   = B0 + B1Xi  + εi,                  (1) 

where in our study Yi1 is the viral load measure at follow-up (i.e. time =1) for the ith study participant, Xi 

is an indicator variable denoting intervention group and εi is the error term. In this model, B0 is the 

model estimated mean viral load at follow-up for the control group and B1 is is the difference in the 

mean response at follow-up comparing Xi = 1 (e.g., intervention group) to Xi = 0 (e.g., control group). This 

unadjusted regression model is equivalent to a two-sample T-test comparing follow-up measures only 

(i.e., it ignores the baseline measure of the response). If the assignment to Xi (0,1) were randomized, 

then the simple follow-up comparison is a valid causal analysis of the effect of the treatment, and should 

be very similar to our crude estimate from the two-sample T-test. Otherwise, additional parameters 

representing individual-level characteristics, such as age or gender, may be added to the model to 

reduce bias due to confounding. Of the three models described in the current section, model (1) would 

also be the only choice in the situation where no baseline measurements of the outcome were available. 

2. Change analysis models the difference in outcome from baseline to follow-up. First, the researcher 

would difference the two response values for each participant (Yi1  - Yi0), and then regress this single 

value on Xi, i.e. the same indicator of the exposure group as specified in the follow-up only model (1). 

The change analysis model would take the form 

(Yi1  - Yi0)   = B0 + B1Xi  + εi.                  (2) 

However, in the change analysis model, B1 is interpreted as the difference between the mean change in 

response for intervention (i.e. Xi = 1) as compared to the average change in response for control (i.e. Xi = 

0). This unadjusted regression model is equivalent to a two-sample T-test comparing the difference in 

baseline and follow-up measures. 

3. Analysis of covariance (ANCOVA) models the difference in mean follow-up of the outcome, 

adjusting for baseline value of the outcome, and takes the form, 

Yi1     = B0 + B1Xi  + B2Yi0 + εi.                  (3) 

Instead of differencing out the baseline value before fitting the regression model as was the case with 

the change analysis (2), in ANCOVA, we include the baseline value (Yi0) as a predictor of follow-up. In 

ANCOVA, B1 is the effect for the difference in mean follow-up outcome comparing intervention vs. 

control groups as it was in the follow-up only analysis (1), with the important difference that it is 

conditional on the other predictors in the model, namely the baseline level of the outcome. In this case, 

B2 represents the effect of the baseline measurement. ANCOVA analysis should only be used when the 

exposure is randomized, such as in a randomized controlled trial (RCT).  Van Belle et al. note that when 

the intervention is randomized, then B1 from each of these three models (i.e., follow-up, change 

analysis, ANCOVA) provides identical estimates, meaning that each of these betas provides a valid 

estimate of the average causal effect of the intervention. However, ANCOVA has been shown to provide 

more precise effect estimates under certain conditions[2] (Chapter 5, pp 124-125).  
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Longitudinal cohort studies with multiple repeated time points 

In cases where longitudinal data include more than two repeated measures2, the researcher has the ability 

to estimate changes in the response over time, and assess whether this change varies by exposure. The 

underlying hypothesis may be the same as with a pre-post analysis (i.e., does the response vary over time 

by exposure status?), but a regression model with more than two repeated measures, may allow for a 

more nuanced understanding of this change over time, as well as increase the power and precision of 

your estimates. Figure 3 depicts a study with a baseline response measure and three follow-up measures 

in both a control group and an intervention group, but the design can be generalized to any number of 

follow-up time points and may not involve a control group.  

 

Figure 3. Schematic depiction of a repeated measures longitudinal study, with controls, with a baseline response measurement 
and three follow-up response measures. 

In the longitudinal cohort design (Figure 3), we answer our key study questions for a non-randomized 

design in the following way: 

No. Question (Yes/No) 

1a Is there a ‘control’ group in the study – i.e., participants who were not exposed to the 

intervention? 

Yes 

1b If yes, then was the exposure randomized across participants; i.e., is the study 

experimental? 

No 

2 Were the same participants measured at each time point?  Yes 

3 Is there more than one follow-up time point? Yes 

                                                           
2 We limit our discussion to cases where the follow-up time is fixed (e.g., 6 months) and measurements are taken at the same 
intervals for all individuals. Analyses that account for different follow-up times for study participants is beyond the scope of this 
Guide.  
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Statistical analysis 

The statistical analysis plan for a multiple repeated measures longitudinal study has several important 

considerations, over and above what we have already discussed; and these considerations may depend 

on the research question being asked, as well as how the data were generated.  

When our exposure is non-randomized (Q1b = No), then we would usually allow the mean response at 

baseline to vary between our exposure groups and we would fit indicator variables for each of the 

modeled time points, as well as their interaction with exposure level. If we performed an observational 

study with four repeated measures of the response (baseline + 3 follow-up), the regression model might 

take the form: 

Yit     = B0 + B1 Xi  + B2(Time1it) + B3(Time2it) + B4(Time3it) + B5(Xi  *Time1it) + B6(Xi *Time2it) + 

B7(Xi  *Time3it) + ui + εit,                                       (4) 

where B0 is the mean response at baseline for the control group, B1 is the mean response at baseline for 

the intervention group, B2 - B4 are the mean CHANGE in response values for the control group at the 

three follow-up times compared to baseline, respectively, and B5 - B7 are the CHANGE in mean response 

values (from baseline) in intervention participants compared to the CHANGE in mean response in 

control participants at the three follow-up times, respectively. In this case, because we anticipate 

correlation of responses measured on the same person, we also include a random intercept term ui for 

each individual, where ui is assumed to be normally distributed with zero-mean and a variance 𝜎𝑢
2 to be 

estimated using the data. This model is called a linear mixed effects model and the residual error term, 

εit, is now different for each measurement on each person but is still assumed to be normally distributed 

with mean zero and constant variance, 𝜎𝑒
2. Additional details and methods to account for this correlated 

error structure can be found in the section accounting for correlated errors.   

We could also choose to perform a change analysis, just as we did with our pre-post data. This would 

require us to difference the baseline value from each of the three follow-up time points and regress this 

differenced measure. The regression model would be similar to our first method but now we have one 

fewer time point since it was used in the differencing step. 

(Yit  - Yi0 ) = B0 + B1 Xi  + B2(Time2it) + B3(Time3it) + B4(Xi *Time2it) + B5(Xi *Time3it) + ui + εi,     (5)  

where B0 is the mean CHANGE (from baseline) in response at Time 1 for the control group, B1 is the 

difference in mean CHANGE in response at Time 1 for the intervention group compared to the control 

group, B2 and B3 are the mean CHANGE in response values for the control group at follow-up times 2 

and 3, respectively, and B4 and B5 are the difference in CHANGE in mean response values (from baseline) 

in intervention participants compared to the CHANGE in mean response in control participants at follow-

up times 2 and 3, respectively.  
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Now let’s suppose that exposure was randomized across study groups. In this case, we would answer 

our key study questions in the following way (i.e., Q1b now = Yes): 

No. Question (Yes/No) 

1a Is there a ‘control’ group in the study – i.e., participants who were not exposed to the 

intervention? 

Yes 

1b If yes, then was the exposure randomized across participants; i.e., is the study 

experimental? 

Yes 

2 Were the same participants measured at each time point?  Yes 

3 Is there more than one follow-up time point? Yes 

We may choose to fit a reduced form of model (4) without allowing the baseline mean response to vary 

by group. Although with randomized experiments it is also common practice to include this additional 

parameter as we do in Equation 4, it is not necessarily needed if groups have similar baseline values, as 

we would expect with randomization.  When model (4) is modified to have a common baseline level, it is 

sometimes referred to in the literature as constrained longitudinal data analysis (cLDA).[3, 4] This model 

removes the fixed effect for ‘Group’ and would instead take the form: 

Yit     = B0 + B1(B1 Xi ) + B2(Time2it) + B3(Time3it) + B4(Xi*Time1it) + B5(Xi*Time2it + B6(Xi*Time3it) 

+ ui + εi,                     (6) 

And finally, we could also perform an ANCOVA, as we did with our pre-post data. Using our multiple 

time points data, our equation would take the form 

Yit = B0 + B1(Yi0) + B2(Xi)  + B3(Time2it) + B4(Time3it) + B5(Xi*Time2it) + B6(Xi*Time3it) + ui +  εi, 

                     (7) 

where B0 is now the mean response for the control group at time=1, Yi0 is the response value for the ith 

individual at baseline and B2 is the mean response for the intervention group at time=1. In their book, 

Applied Longitudinal Data Analysis, Fitzmaurice, Laird and Ware note that results from fitting equations 

6 and 7 yield almost identical results when the exposure is randomized[2]. So why would one choose the 

cLDA approach (equation 6) over ANCOVA (Equation 7)? The primary reason is that the cLDA model is 

often more efficient (i.e., more powerful) than the ANCOVA approach.[4]  In addition, the cLDA model 

uses data from all subjects and all time points, even those who were only assessed at baseline.   

Fitzmaurice, Laird, and Ware also note that equations 6 and 7 should not be used when the exposure is 

non-randomized (i.e., observational studies)[2]. Equation 6 should not be used in this instance because 

it’s often unreasonable to assume that mean baseline values would be equal across the two groups in an 

observational study. Furthermore, Equation 7 (i.e., ANCOVA) should not be used for observational 

studies because the baseline value may be associated with the exposure. To illustrate this last point, 

imagine that we fit equation 6 to our Ugandan HIV study where exposure to the intervention was non-
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randomized. And let’s further assume that because exposure was not randomized, people who were 

sicker (i.e., higher viral load) at baseline, were more likely to receive the intervention that those less 

sick3. In this case, if we fit equation 6 to the data, we would be testing the hypothesis,  

“Is the change in viral load over time different comparing a study participant who was 

exposed to the intervention and a participant who was unexposed”? 

If, instead, we fit equation 7 to the data, we would be testing a different hypothesis; specifically,  

“Is the change in viral load over time different comparing a study participant who was 

exposed to the intervention and a participant who was unexposed, given they both have 

the same initial viral load value”? 

This conditional hypothesis is rarely of interest in an observational study, since there is no reason to 

think that these two groups would have the same initial viral load value. If the study were randomized, 

however, we would expect that the groups would have similar mean baseline viral load values, as well as 

similar distributions of all other potential confounding factors.  

Accounting for correlated errors 
When modeling longitudinal repeated measures data, our usual assumption that each response is 

independent does not hold. This is because, by design, we have collected multiple responses on a single 

person or other unit of analysis, and these repeated measures are more similar to one another, on 

average, than they are to responses from another individual. If we do not properly account for this 

correlation in the response, we would underestimate the amount of variation in the response, which 

would lead to an underestimate of our modeled standard errors. There are three common methods for 

handling this correlated error structure: calculating robust standard errors, modeling the error by using 

a generalized estimating equation, and including a random intercept in a mixed effects regression 

model, i.e., as described above in equations (4)-(7). A detailed description of each method is beyond the 

scope of this Guide, but a brief overview and comparison of each, is described here. For a more detailed, 

technical discussion of modeling the correlation structure of longitudinal data within a mixed effects 

regression framework, see the Core Guide titled, Correlation Structures in Longitudinal Data Analysis. 

Estimating robust standard errors simply means that we calculate the variance of the response directly 

from the sample, and we make no assumptions about the distribution (e.g., Gaussian) from which the 

data were generated. The most common method of generating robust standard errors is by way of the 

Hubert White sandwich estimator.  

Using a generalized estimating equations (GEE) approach is a bit more complicated, but similar to 

calculating robust standard errors. The approach does not directly model the correlation structure (i.e., 

                                                           
3 This lead to a bias known as ‘confounding by indication’. 
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the response covariance matrix), but rather treats it as a nuisance parameter. The difference is that you 

must specify a working correlation matrix. The four most common covariance structures are 

Independence, Exchangeable, Unstructured and Autoregressive. Although you must choose one as your 

working correlation matrix, under certain assumptions, GEE is robust to misspecification of this working 

correlation structure. The GEE approach can be used with any GLM, such as linear, logistic or log 

regression.  

Fitting a random intercept in a mixed effects regression model is the only method of the three that 

explicitly models the response covariance matrix. In our repeated measures longitudinal design, we would 

fit a random intercept for study participant, which would model a separate ‘random’ parameter for the 

baseline response (e.g., viral load). Most commonly, this random intercept is assumed to be distributed 

Gaussian, in effect, allowing each participant’s baseline response to vary from the mean across all 

participants. Modeling this random 

intercept allows a partitioning of the 

variance into within and between 

participant variance, which can be 

used to calculate the correlation, or 

‘clustering’ of the response between 

each participant. The relative 

magnitude of the between-person 

variance to the overall variance of the 

outcome, i.e. 𝜎𝑢
2/(𝜎𝑢

2 + 𝜎𝑒
2) is called 

the intraclass correlation coefficient 

(ICC). It is a useful statistic on its own, 

and can be used in the design of future 

studies.  

In practice, fitting a random intercept 

implies an exchangeable correlation 

structure, which means that all pairs of outcome measurements on the same individual are assumed to 

have the same correlation irrespective of how far apart in time they are measured. Other random terms, 

e.g., a random slope, can also be included in the model in order to allow for alternative correlation 

structures. See [1, 3] for more details. 

Marginal versus Conditional Effects: When to use GEE versus a Mixed Effects Regression 

model? 

Fitting generalized linear models with either a GEE or within the mixed effects regression framework 

(e.g., with a random intercept) have become common practice when analyzing repeated measures 

longitudinal data. And while many researchers often use these two methods interchangeably, there are 

a couple of important considerations when determining which method to use for your study. 

Different meanings of “fixed effect” 

In biostatistics, the term fixed effect refers to effects in a 

regression equation that are assumed not to vary; i.e., they 

are constant across individuals. This is in contrast to random 

effects, which are assumed to vary across individuals.  

In econometrics and other social sciences fields, the term 

fixed effect means something quite different. It refers to a 

regression technique used for panel data (panel data is the 

econometrics term for longitudinal data) whereby the 

response, Yit, is averaged across time, �̅�i, and then this 

average value is differenced out of the regression equation. 

This technique is used to remove the autocorrelation found 

in repeated measures to achieve a similar goal as we have 

in biostatistics when we use GEE or GLMM.  
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First, the parameter estimates from a linear GEE model with exchangeable working correlation matrix 

should be identical to a linear mixed model with a random intercept; however, this is not true for non-

linear models. For example, the logit link used in logistic regression models is a non-linear 

transformation, which means that the mean for the random effect is estimated on the logit scale and 

will differ from the GEE estimate when back-transformed.  

Second, and perhaps most importantly, the interpretation of results from a GEE model is different than 

that of a mixed model, even if the parameter estimates are identical. A GEE model is a so called, 

population average model. Inference is made to the marginal (i.e., the average effect across the entire 

population) of the exposure on the outcome. A mixed model, on the other hand, produces subject-

specific (i.e., conditional) effects. For example, in the case of a mixed model with a random intercept, 

inference is conditional on the random intercept (i.e. the “subject”). Let’s use our Uganda HIV study to 

illustrate this distinction. In this study, our main interest is to estimate the effect of the intervention on 

viral load level. Since we are analyzing repeated measures on the same individual, we need to use either 

a GEE model or a mixed model to account for this correlation in the response within study participants. 

If we choose a GEE model, we would interpret our parameter for ‘group’ as the mean difference in viral 

load comparing our intervention to our control group, averaged across the population of all individuals 

in the study. If we choose a mixed model instead, we would interpret our parameter for ‘group’ as the 

mean difference in viral load comparing our intervention to our control group, conditional on each 

subject’s random effects. In this example, since viral load is modeled as a continuous outcome assuming 

a Gaussian distribution, the mixed model estimates can also be interpreted as population average. But 

again, the interpretation of the two models would not be the same for other GLM, such as logistic 

regression models.  

Summary 
This Core Guide has focused on basic analytic methods and considerations for common structures of 
data that arise from longitudinal cohort studies. The key design questions and corresponding analysis 
options are summarized in Table 1 and both Stata and SAS code to implement the options are provided 
in the Appendix. 
 
Prepared by: Joseph Egger, PhD 
Reviewed by: Duke Global Health Institute | Research Design & Analysis Core 
Version: 1.0, last updated October 05, 2017 
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Table 1. Summary table of common methods for analyzing longitudinal data. 

Design Control 

group? 

Randomized? Same pp 

measured? 

More than 1 

f/up? 

Common analysis options 

Designs with no control group 

Pre-post no 

control group 

(different 

people at each 

time point) 

No No No No Distr~N: Two-sample Student’s T-Test 

Distr~Binary: Chi-squared test of independence 

*Note: both methods are subject to individual-level 

confounding since populations differ at baseline and 

f/up.  

Pre-post no 

control group 

(same people at 

each time point) 

No No Yes No Distr~N: One-sample T-test; Paired T-test 

Distr~Binary: McNemar’s test (paired) 

*Note: both methods are subject to confounding by 

time. 

      

Designs with a control group – all with same individuals measured at each time point 

Pre-post with 

control group – 

not randomized 

Yes No Yes No Distr~N: Two-sample Student’s T-Test (on change in 

mean response) 

Distr~Binary: Chi-squared test of independence (at 

f/up only) 

*Note: both methods are subject to confounding 

since exposure is not randomized. 

Regression methods (assuming proper adjustment 

for confounding) 

- Follow-up only (Equation 1) 

- Change analysis (Equation 2) 

Pre-post with 

control group – 

Yes Yes Yes No Distr~N: Two-sample Student’s T-Test (on change in 

mean response). 
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randomized (i.e. 

RCT) 

Distr~Binary: Chi-squared test of independence (at 

f/up only). 

Regression methods 

- Follow-up only (Equation 1) 

- Change analysis (Equation 2) 

- ANCOVA (Equation 3) 

 Yes No Yes Yes - Model full response vector with parameter for 

group (Equation 4) 

- Change analysis (Equation 5) 

 Yes Yes Yes Yes - Model full response vector but excluding 

parameter for group (Equation 6) 

- ANCOVA (Equation 7) 
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Sample Stata and SAS Statistical Code 
Code is provided here for example use only. The precise code needed for your analysis will likely differ. 

1. One sample t-test (requires wide format data) 

Stata 
generate y1y0_diff = y1-y0 

ttest y1y0_diff ==0 

  

SAS 
proc tttest data = name; 

var y; 

run; 

 

2. Paired t-test (requires wide format data) 

Stata 

ttest y0==y1 

 

SAS 
proc ttest data = name; 

      paired y0*y1; 

run; 

 

3. McNemar’s test (requires wide format data) 

Stata 

mcc y_bl y_fup [fw=n] 

 

SAS 
proc freq data=data; 

 tables y_bl*y_fup /agree expected norow nocol nopercent;  

run; 

 

4. Two sample T-test  

Stata 
ttest y, by(groupvar) /*long format data*/ 

ttest y1 == y2, unpaired /*wide format data*/  
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SAS (assumes long format data) 
proc ttest data = name; 

 class(groupvar); 

 var y; 

run; 

5. Chi-squared test for independence 

Stata 
tabulate y group, chi2 

 

SAS (assumes long format data) 
proc freq data = name; 

 tables y*group / expected chisq; 

run; 

 

Regression models – all models below assume continuous Normal data but can be 

adapted to GLM. The options code for common GLMs with a binary response are: 

Stata 
Logistic: family(binomial) link(logit) eform 

Log binary: family(binomial) link(log) eform 

Linear risk: family(binomial) link(identity) 

SAS 
Logistic: dist = binomial link=logit;  

estimate 'Beta' xvarname 1 -1/ exp; 

 

Log: dist = binomial link=log;  

estimate 'Beta' xvarname 1 -1/ exp; 

 

Linear risk: dist = binomial link=identity 

 

6. Regression: follow-up only (Equation 1) 

Stata 
glm y1 i.group, fam(gaussian) link(identity) /*assumes wide data. 

fitting MLE. Use ‘regress’ command to fit equivalent model using OLS*/ 
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glm y i.group if time==1, fam(gaussian) link(identity) /*assumes long 

data where there is a single response variable, y, and a separate 

indicator variable, time, that indicates baseline (0) or f/up (1) 

period.  

 

SAS (assumes long format data) 
proc genmod data = name if time=1; 

      class group; 

      model y = group / dist = normal 

                       link = identity; 

run; 

7. Regression: change analysis (Equation 2, assumes wide data) 

Stata 
generate y1y0_diff = y1-y0 

glm y1y0_diff i.group, fam(gaussian) link(identity) 

 

SAS 
data data2; 

      set data 1; 

      y1y0_diff = y1-y0; 

run; 

proc genmod data = data2; 

      class group; 

      model y1y0_diff = group / dist = normal 

                                   link = identity; 

run; 

 

8. Regression: ANCOVA (Equation 3, assumes wide data) 

Stata 
glm y1 i.group y0, fam(gaussian) link(identity) 

SAS 
proc genmod data = data1; 

      class group; 

      model y1 = group y0 / dist = normal 

                         link = identity; 
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run; 

 

9. Regression: model full response vector with parameter for group (Equation 4, assumes 

long data) 
All of the models below use either GEE or GLMM to account for correlated errors in the response, but 

assume a simple structure. See Core Guide Correlation Structures in Longitudinal Data Analysis for a 

more detailed description and sample code for these analyses.  

Stata 
GEE model 

xtgee y i.group i.time i.group#i.time, fam(gaussian) link(identity) 

i(id) corr(exc) eform /*correlation can be change to various options. 

Most common are exchangeable, independent, unstructured and 

autoregressive 1 (ar1)*/ 

estat wcorr /*provides the working correlation matrix from model*/ 

GLMM using mixed command 

mixed y i.group i.time i.group#i.time || id: /*’mixed is the command 

for linear mixed models. See ‘help me’ in stata for similar commands 

for GLMM*/ 

SAS 
GEE model 

proc genmod data=data ; 

   class group time id; 

   model y = group time group*time  /  dist=normal; 

   repeated subject=id / type=exch covb corrw; 

run; 

 

GLMM  

proc mixed data=data; 

 class group time id; 

 model y = group time group*time / s chisq; 

 random INTERCEPT / subject=id; 

run; 
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10. Regression: change analysis (Equation 5, assumes long data) 

Stata 

This first step requires the baseline response, y0, to be stored as a separate variable. The data are in 

long form, however, there is no row for the baseline response. If there is, you will need to exclude from 

the analysis on the model command line (‘if y !=0’) 

generate ydiff = y-y0 

GEE model 

xtgee ydiff i.group i.time i.group#i.time, fam(gaussian) 

link(identity) i(id) corr(exc) eform  

GLMM 

mixed ydiff i.group i.time i.group#i.time || id:      

       

SAS 
GEE model 

proc genmod data=data ; 

   class group time id; 

   model ydiff = group time group*time  /  dist=normal; 

   repeated subject=id / type=exch covb corrw; 

run; 

 

GLMM  

proc mixed data=data; 

 class group time id; 

 model ydiff = group time group*time / s chisq; 

random INTERCEPT / subject=id; 

run; 

 

11. Regression: Model full response vector but excluding parameter for group (Equation 

6, assumes long data) 

Stata 

Data are assumed to be similar long form as with equation 4 above.  

GEE model 
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xtgee y i.time i.group#i.time, fam(gaussian) link(identity) i(id) 

corr(exc) eform  

GLMM 

mixed y i.time i.group#i.time || id:  

 

SAS 
GEE model 

proc genmod data=data ; 

   class group time id; 

   model  y = time group*time  /  dist=normal; 

   repeated  subject=id / type=exch covb corrw; 

run; 

 

GLMM  

proc mixed data=data; 

 class group time id; 

 model y = time group*time / s chisq; 

 random INTERCEPT / subject=id; 

run; 

 

12. Regression: ANCOVA (Equation 7, assumes long data) 
Model assumes baseline response, y0, is stored as a separate variable. The data are in long form, 

however, there is no row for the baseline response. If there is, you will need to exclude from the analysis 

on the model command line (‘if y !=0’) 

Stata 
GEE model 

xtgee y i.group i.time i.group#i.time y0, fam(gaussian) link(identity) 

i(id) corr(exc) eform  

GLMM 

mixed y i.group i.time i.group#i.time y0 || id: 

 

SAS 
GEE model 
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proc genmod data=data; 

   class group time id; 

   model  y = group time group*time y0  /  dist=normal; 

   repeated  subject=id / type=exch covb corrw; 

run; 

 

GLMM  

proc mixed data=data; 

 class group time id; 

 model y = group time group*time y0 / s chisq; 

 random INTERCEPT / subject=id; 

run; 

 


