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Core Guide: Fitting Regression Models with a 

Binary Outcome 
Part of a series addressing common issues in statistical and epidemiological design and analysis   

 

Purpose 
When the purpose is inference, and your goal is to maximize the precision and minimize the bias of your 

primary effect (treatment, exposure, etc.). 

Logistic (logit link) or log-risk/log-binomial (log link) regression are the most common GLM to fit to a 

binary outcome. A linear risk/linear probability (identity link) model can also be used to estimate the risk 

difference; however, this is somewhat less common. For associations that can be assumed to be causal, 

this risk difference can be interpreted as the ‘attributable risk’ of the exposure on the outcome.  

Deciding between a logit or log-risk model 
1. If the data have been generated from a case-control study that employed ‘survivor sampling’ or 

when the underlying distribution of the exposure in the source population cannot otherwise be 

estimated, then a log-risk model cannot be used, because the risk ratio cannot be estimated. 

Instead, logistic regression should be used to estimate the odds ratio.  

2. For a cross-sectional study, log-risk regression can be used but the resulting effect parameter 

should be termed the ‘prevalence ratio’ to clarify that the estimate of risk is from cross-sectional 

data, and therefore, not truly a ‘risk’.  

3. For a cohort study, the most common parameter estimate is the risk ratio, and therefore, a log-

risk model is generally preferred to a logistic model.  

4. When there is a choice, we generally recommend use of the risk ratio over the odds ratio. While 

both are appropriate measures, risk is more interpretable and intuitive than the odds. However, 

the odds may be preferred for several reasons, one of which may simply be the choice of some 

journals/editors.  

5. Another option for modeling a binary outcome with a log link is the modified Poisson regression 

approach, as described by Zou1.  In this method, the statistician simply fits the model using 

Poisson regression with a robust error variance.  In a simulation study, Knol et al.2 showed that 

the modified Poisson approach and log-binomial (log-risk) approach yielded correct risk ratios 

and confidence intervals.  Thus, the modified Poisson approach may be used if the log-binomial 

model does not converge. 



 
 
   
    

2 | P a g e  
 

Considerations when deciding between a logit or log-binomial model. Many studies have 

argued that RCTs and cohort studies should generally not use the logit link and instead use a link that 

allows direct estimation of the risk difference or risk ratio1-3.   Often in the literature, odds are 

interpreted as risks.  However, with increasing prevalence of exposure in a population comes increasing 

disparities between the odds ratio and risk ratio, with the odds ratio being pulled much farther from 

unity1,2,4.  Not only is this so, but odds are much less intuitive than risks, and the very people who use 

the results of research in practice, such as clinicians, often mistake odds for risks4.   

In addition, some high profile studies using odds ratios have been misinterpreted by the authors, the 

media, and the public.  For example, in a study published in 1999, the authors found that black women 

had an odds ratio of 0.4 compared to white men in being referred to cardiac catheterization, and 

conclude that black women are 60% less likely to be referred to the “best line of care”, thus indicating 

discrimination in medical referral practices5.  However, Schwartz et al point out several flaws in their 

interpretation (and the subsequent media interpretation)3.  The authors of the original study interpreted 

the odds ratio as a risk ratio.  When the actual risk ratio is computed, it is 0.87!  The large discrepancy is 

due to the high prevalence of referral (~90%) in this population.   

Steps in developing your model. The below methods generally apply to both logit and log-link (and 

linear risk) GLM types.  

1. Develop a clear hypothetical association between your primary exposure variable (E), and your 

outcome (O), as well as any confounding variables (C, measured and unmeasured), mediating 

variables (M), and effect modifiers (EM).  

2. Draw a causal diagram to best represent this network of associations. Ultimately, your model 

should be heavily grounded in theory, and should not simply be a fishing expedition for possible 

variables with small p-values.  

3. To assess the possibility of confounding, your covariate (C) needs to be associated with (E) and 

causally associated with (O). 

a. First, summarize the raw data in contingency tables, figures, and other tables to visually 

assess the relationships between (E), (O) and (C). For example, if these variables are 

dichotomous, produce 2 2x2 tables showing the relationship between each of (E) and 

(C) and (O) and (C). Note: this assumes that you have already established that there is a 

crude association between (E) and (O). Then consider calculating a Chi-squared statistic 

(or other similar test) to formally assess these relationships. The p-value from this Chi-

squared statistic will give you evidence for a crude association. You could also forgo this 

step and move straight into univariable modeling if you prefer. For example, a logistic 

regression model of (C) on (E) will give you similar results as a Chi-squared test of the 

same relationship. For the modeling approach, the parameter estimate and the p-value 

should be used together to assess whether the variables are crudely associated. 

Variables from these analyses that show an association with the outcome, either as 

primary exposure or confounders should then be considered for inclusion in a 

multivariable model. For continuous variables (E and C), consider using x/y plots of your 
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data, correlation coefficients, tables and t-tests to crudely assess the data. Inclusion of 

possible mediators and effect modifiers are beyond the scope of this Guide and are 

discussed separately.  

4. Before fitting a multivariable model, go back to your casual diagram, expert knowledge of the 

subject matter, and common sense, and make sure that each of your variables are appropriate 

to include in the same model. For example, are any two of your covariates highly correlated (r > 

0.6)? If so, then it may not be appropriate to fit these two variables in the same model. In this 

case, fit separate models for each of the two collinear variables, or choose one of the variables 

because, a priori, it’s more important to your work. Furthermore, based on your casual diagram, 

does any one variable act as a collider between (E) and (O)? If so, then do NOT include this 

variable in your model. Or test by including and excluding this variable and see how the 

parameter estimate of your primary exposure is affected.  

5. Fit a saturated model, including all covariates that proved significant in crude analysis (and using 

your best judgment and guidance in step #4 above). Write down or otherwise save the log-

likelihood (LL) of the model, and the parameter estimate and standard error for (E).  Based on 

these values, calculate the Mean Squared Error (MSE) for (E) of this fully saturated model (see 

resource guide on MSE for details). 

6. Look at the parameter estimates (and to a much lesser degree, the p-value) of all covariates in 

the model in Step #5. Any parameters that have very little effect (e.g., RR ~1.0) should be 

considered for removal from the model. This requires your best judgment as there are no firm 

rules on this. For example, if a parameter has a p-value of 0.2 but the RR=2.5, you may want to 

keep this variable. The only general rule is that if a parameter estimate for (E) changes by more 

than 10% by removing a covariate, then consider keeping this covariate. Removal of a single 

variable, in general, should (hopefully only slightly) increase the bias of (E) but should also 

increase the precision of (E). The MSE approach is attractive because it finds the model that 

maximizes the precision and minimizes the bias of (E).  

7. Note: we do not recommend using automated procedures in Stata, SAS or other software to fit 

final models. These procedures are based only on the smallest p-values of parameter estimates, 

which is a simplistic and often incorrect way of finding your best model.  

8. Once you have fit several different models based on Step #6, then compare the MSE of each 

model. The model with the smallest MSE value may be your final model.  

9. You can also perform a Likelihood Ratio Test (LRT) between two nested models. The LRT 

assesses the overall model fit and is not directly measuring the precision and bias of an 

estimate. In general, the more covariates you add, the better the fit. As a result, you would 

often choose the larger model if you use the LRT method. As a result, the Akaike Information 

Criterion (AIC), or other ‘IC’ values can be used instead of the LRT, because they penalize a 

model with more covariates.  The rule of thumb is that a model with an AIC value of 2 or more 

points lower than another model is a better fit (and more parsimonious) and should be 

considered over the other model. However, for both the LRT and AIC methods, the number of 

observations for each model must be exactly the same or the models cannot be comparable. 
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The Chi-squared statistic and p-value from the LRT can then be assessed to determine the better 

fitting model.  

10. In general we recommend using both the AIC and the MSE methods to determine your final 

model. Oftentimes these results will agree.  

11. In summary, model fitting is difficult, nuanced, and requires practice.  There are few rules of 

thumb or set algorithms for finding your ‘final’ model. It relies on your best judgment and 

should be firmly rooted in a priori theory of the causal relationships you are testing.  
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Appendix.  

Example STATA Code for fitting the models 

Log-binomial (log-risk) regression 
glm Y X Z, family(binomial) link(log) eform 

 

Modified Poisson regression 
glm Y X Z, family(Poisson) link(log) vce(robust) eform 

 

Linear risk (Linear probability) model 
glm Y X Z, family(Gaussian) link(identity) 

Note: OLS should not be used to fit linear risk models. 

 

Example SAS Code for fitting the models 

Log-binomial (log-risk) regression 
proc genmod data=dataset descending; 

model Y=X Z / dist=bin link=log; 

estimate ‘X label’ X 1 /exp; 

Modified Poisson regression 
proc genmod data=dataset; 

class id; 

model Y=X Z / dist=poisson link=log; 

repeated subject=id/type=ind; 

estimate ‘X label’ X 1 /exp; 

Linear risk (Linear probability) model 
proc genmod descending; 

model Y=X Z / dist=bin link=identity; 

 Note: OLS should not be used to fit linear risk models. 

 


