Biomonitoring of Air Pollution Exposure and Pathological Changes in Individuals

Junfeng (Jim) Zhang, PhD
Professor of Global and Environmental Health
Highlights

➢ Exposure Biomarker for diesel nitro-PAHs
 Urine (CEF published work)
 Urine (HEART study)
 Hb-adducts of BaP and nitro-PAHs

➢ Biomarkers of physiological response/pathway
 MDA
 8-OHdG
 nitrite
Exposure Biomarker for diesel nitro-PAHs

Urine

- Diesel exhaust (DE) is a significant source of air pollution that has been linked to respiratory and cardiovascular morbidity and mortality.

- Nitro-PAHs have been detected from diesel exhaust particles, and appear to be a more specific marker of DE exposure.

- Nitro-PAHs, once inhaled, can be partially metabolized to the corresponding amino-PAHs and excreted in urine.
Nitroreductase

\[\text{Nitroreductase} \]

\[\text{cytochrome P-450} \]

\[\text{Hydrolysis} \]

\[\text{Hydrolysis} \]

\[\text{Hemoglobin adducts} \]

\[\text{DNA adducts} \]

1-Nitro-Pyrene

1-Amino-Pyrene

1-Nitroso-Pyrene

Hemoglobin adducts

DNA adducts
Quantification of 1-aminopyrene in human urine after a controlled exposure to diesel exhaust

Robert Laumbach, Jian Tong, Lin Zhang, Pamela Ohman-Strickland, Alan Stern, Nancy Fiedler, Howard Kipen, Kathie Kelly-McNeil, Paul Lioy and Junfeng Zhang

- An **HPLC-fluorescence** system was used to analyze **1-aminopyrene** in human urine samples collected prior to and during 24 h following the start of 1 h controlled exposure to DE (target concentration 300 µg/m³ as PM₁₀) and clean air control.
Urinary polycyclic aromatic hydrocarbon metabolites as biomarkers of exposure to traffic-emitted pollutants

Jicheng Gong a,f, Tong Zhu b, Howard Kipen c, David Q. Rich d, Wei Huang e, Wan-Ting Lin f, Min Hu b, Junfeng (Jim) Zhang a,f,*

a Duke University, Nicholas School of the Environment and Duke Global Health Institute, Durham, NC, USA
b Peking University, College of Environmental Sciences and Engineering and the Center for Environmental Health, Beijing, China
c Rutgers Robert Wood Johnson Medical School, Department of Environmental and Occupational Medicine, Piscataway, NJ, USA
d University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
e Peking University, School of Public Health, Department of Occupational and Environmental Health and Institute of Environmental Medicine, Beijing, China
f University of Southern California, Keck School of Medicine, Department of Preventive Medicine, Los Angeles, CA, USA
1&2-amino-naphthalene

[Graph showing percent changes in 1&2-AN per IQR increases in pollutants]
1-amino-pyrene
1-OH-pyrene

Percent changes in 1-OHP per IQR increases in pollutants

Pollutant * Lag

CO NO₂ O₃ PM₂.₅ PN EC pyrene B[a]P Total PAHs

Pollutant * Lag

-20 0 20 40 60

Percent changes in 1-OHP per IQR increases in pollutants

Pollutant * Lag

CO NO₂ O₃ PM₂.₅ PN EC pyrene B[a]P Total PAHs

Exposure Biomarker for diesel nitro-PAHs
Hemoglobin adducts

- The formation of DNA and protein adducts from benzo[a]pyrene
Biomarkers of physiological response / pathway

Particulate Matter

Epithelial cells
- Mitochondria
- NADPH oxidase

Fenton reactions
- Transit metals: Fe, Cu, V, Cr, etc

Inflammation
- Macrophage cells
- iNOS (NO synthase)

ROS
- $H_2O_2 \rightarrow OH^-$
- O_2^-
- $ONOO^-$

DNA oxidation
- DNA repair
- 8-OHdG

Lipid peroxidation
- ω-6-polyunsaturated acids
- MDA

Oxidation of NO
- RS-NO\leftrightarrowRS-H
- NO_2^-
Biomarkers of physiological response / pathway malondialdehyde (MDA)

<table>
<thead>
<tr>
<th>Method</th>
<th>Rapid</th>
<th>Easy</th>
<th>Economical</th>
<th>Less specific</th>
<th>Less sensitive</th>
<th>Less reproducible</th>
<th>Specific</th>
<th>Reproducible</th>
<th>Easily available</th>
<th>Sensitive</th>
<th>Pre-treatment required</th>
<th>On-fibre derivatization</th>
<th>Costly</th>
<th>Derivatization required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrophotometry (TBARS)</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>HPLC-FL</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>GC-MSMS</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>LC-MSMS</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Biomarkers of physiological response / pathway malondialdehyde (MDA)

- **Free MDA** VS **Total MDA**
 - Broncho-alveolar lavage fluid (BALF)
 - Urine
 - Serum
Free and total MDA
Urine

\[y = 0.2053x - 2.2772 \]
\[R^2 = 0.7868 \]
Free and total MDA Serum

Asthmatic vs **non-Asthmatic**
Biomarkers of physiological response / pathway

Animal Inhalation Chambers

Flow rate = 35 L/min
Velocity = 0.0004 m/s
Temp = 24 ± 1 °C
Lighting = natural day/night cycle
Biomarkers of physiological response / pathway

MDA: Animal Inhalation Chambers

Mean(SD) of MDA

- **Pregnant rats after 14 day exposure**
 - (n=6)
 - P=0.01

Pups at 3 or 8 wks old (male + female)

- **Filtered**
- **Unfiltered**
- Mother Rats

- **Mean(SD) of MDA**
 - (n=10)
 - P=0.001
Biomarkers of physiological response / pathway

MDA: Beijing Olympic study

% changes in EBC MDA associated with IQR increases in ambient SO2 and PM2.5
Biomarkers of physiological response / pathway
MDA: Beijing Olympic study

% changes in Urine MDA associated with IQR increases in
ambient SO$_2$ and PM$_{2.5}$
Biomarkers of physiological response / pathway 8-hydroxy-2’-deoxyguanosine (8-OHdG)

• Analyzing methods

ELISA
• Easy to perform
• Non-specific
• Lower reproducibility

HPLC-ECD
• Specific
• Sensitive
• Possible interferences from the biological matrix

LC-MSMS
• Specific
• More sensitive

Biomarkers of physiological response / pathway
Urinary 8-OHdG: Beijing Olympic study

% changes in urine 8-OHdG associated with IQR increases in ambient SO₂ and PM₂.₅
Biomarkers of physiological response / pathway

Nitrite

- HPLC-UV
 - Sensitive
 - Reproducible
 - Easy to perform (no pretreatment required for exhaled breath condensate and BALF samples)
Biomarkers of physiological response / pathway
Nitrite: Beijing Olympic study

% changes in EBC Nitrite associated with IQR increases in ambient SO2 and PM2.5
Thank you

Jake Chung

Xiaoxing Cui

Marilyn Duarte

PI: Junfeng (Jim) Zhang

Mingquan Li

Drew Day

Hailong Han

Jicheng Gong

Linchen He