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ABSTRACT
Background: Tick-borne pathogens (TBPs) are frequently studied in developed nations but
are often neglected in emerging countries. In Mongolia, TBP research is especially sparse, with
few research reports focusing upon human and domestic animal disease and tick ecology.
However, little information exists on TBPs in small mammals.
Methods: In this 2016 cross-sectional pilot study, we sought to uniquely study wildlife for
TBPs. We live-trapped small mammals, and tested their whole blood, serum and ear biopsy
samples for molecular or serological evidence of Borrelia spp., Rickettsia spp., and Anaplasma
spp./Ehrlichia spp.
Results: Of 64 small mammals collected, 56.0%, 39.0% and 0.0% of animals were positive by
molecular assays for Borrelia spp., Rickettsia spp., and Anaplasma spp./Erhlicia spp., respec-
tively. 41.9% were seropositive for A. phagocytophilum and 24.2% of animals were seroposi-
tive for Rickettsia rickettsii.
Conclusion: This pilot data demonstrates evidence of a number of TBPs among small
mammal populations in northern Mongolia and suggests the need to further investigate
what role these mammals play in human and domestic animal disease.
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Background

During the last three decades, awareness of tick-
borne pathogens (TBP) have increased globally.
Human infection with TBPs occur when people
have contact with areas cohabitated by tick vectors
and disease reservoirs. Studying the ecology of TBPs
and their animal reservoirs is key to our understand-
ing of disease epidemiology. While much is known
about TBPs in developed settings [1–3], major gaps of
knowledge remain regarding ticks and sylvatic trans-
mission cycles in developing countries. This holds
true in Mongolia, where a number of studies docu-
menting tick diseases of clinical relevance have con-
firmed the presence of TBPs [4–12], but research
regarding wild animal reservoirs has been largely
neglected. Further understanding of wild animal
reservoirs and disease ecology of TBPs in Mongolia
is particularly important, given that approximately
33% of the country’s total human population relies
on herding, an activity by which individuals spend
long periods of time outdoors and have increased
contact with animals leading to a greater exposure
to ticks.

Small mammals are known to serve as reservoirs
for a variety of TBPs worldwide, including

Anaplasma phagocytophilum, Borrelia spp., and
Rickettsia spp., and are important to the ecology of
ticks and the pathogens they harbor. Some research
conducted in China has identified TBPs in small
mammal species along the Mongolian border in the
Xinjiang and Inner Mongolia Autonomous Regions
[3,13–17]. However, few studies have assessed the
prevalence of TBPs in animals, specifically small
mammal species, within Mongolia, and the risk fac-
tors associated with TBP detection in animal reser-
voirs remains largely undescribed. In this pilot study,
we sought to identify the role of small mammal
species in the ecology of TBPs in Mongolia, specifi-
cally Borrelia spp., Rickettsia spp., and Anaplasma
spp./Ehrlichia spp. using serological and molecular
analysis.

Methods

Study sites

Between 20 June and 23 July 2016, small mammals
were captured from twelve sites in three aimags (pro-
vinces) in Northern Mongolia (Figure 1). Latitude
and longitude of each sampling site was collected
and remote sensing data were used as previously
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described [18] to provide basic landscape differences
among sampling areas, including normalized density
vegetation index (NDVI), land surface temperature
(LST), and elevation.

Small mammal sampling

Tomahawk traps or Sherman traps were baited with a
mix of oat, grain, potato and peanut butter for 1–2
nights, for a total of 17 trap-nights. Traps were placed
near small mammal burrows that had clear indica-
tions of recent small mammal activity including fresh
scratched dirt and droppings in front of burrows.
Traps were set between 7:00 PM and 10:00 PM and
checked every 4–6 hours for the presence of small
mammals.

Small mammals captured were anesthetized with
ketamine (50 mg/Kg) and assessed for species and
gender by a veterinarian. Samples collected from
small mammals included: (1) one 2 × 2 mm ear
biopsy placed in 70% EtOH, (2) one serum sample
placed onto blood sampling paper (Toyo Roshi
Kaisha, Ltd., Tokyo, Japan), and (3) approximately
100 uL of whole blood preserved in 20 uL 10 mM
EDTA/100 uL. Whole blood samples were kept refri-
gerated at 4°C and ear biopsy and blood sampling
paper was kept at room temperature until further

analysis at the Institute of Veterinary Medicine,
Ulaanbaatar, Mongolia.

PCR assays

Nucleic acid was extracted from whole blood and ear
biopsy samples using the TIANamp Genomic DNA
Kit (Tiangen Biotech (Beijing) Co., LTD, Beijing,
China), and screened for Borrelia spp. by PCR target-
ing the rrs-rr1A IGS gene, as previously described
(Table 1) [19]. In addition, nucleic acid extracts
were screened for (1) Rickettsia spp. targeting the
gltA gene (citrate synthase gene) [20] and (2)
Anaplasma spp./Ehrlichia spp. targeting the 16S
rRNA gene (Table 1) [21,22]. Samples were compared
against known positive tick pool samples from
another study that was previously sequenced and
identified as Rickettsia raoultii [23], Anaplasma pha-
gocytophilum, Ehrlichia muris, or Borrelia garinii.

Amplified PCR products were loaded on a 2% gel
for electrophoresis and stained with ethidium bro-
mide before visualizing through an ultra violet
trans-illuminator (ENDUROTM GDS, Labnet
International, Edison, NJ, USA). Small mammals
were determined to be actively infected with
Borrelia spp., Rickettsia spp., or Anaplasma spp./
Ehrlichia spp. if whole blood samples were positive
by PCR. Additionally, if ear biopsy samples were
positive by PCR, animals were determined positive
for Borrelia spp. [24–26].

Indirect fluorescent assay

Serum samples were assessed for antibodies against
Rickettsia rickettsii and Anaplasma phagocytophilum
using indirect fluorescent assays (IFA). Blood sam-
pling paper was cut into small pieces and soaked in
0.4 mL of PBS for 60 minutes at room temperature.
Samples were compared against positive Rickettsia
and Anaplasma serum controls (Protatek
International, Inc., Minnesota, USA). Serum was
diluted at 1:50 for unknown samples or 1:200 for
control serum, applied to antigen slides (Protatek
International, Inc., Minnesota, USA) and incubated

Figure 1. Map of animal trapping locations in northern
Mongolia.

Table 1. List of primers used to conduct molecular analyses for Borrelia spp., Rickettsia spp., and Anaplasma spp./Ehrlichia spp.
Target Gene Primers Sequence (5ʹ–3ʹ) Fragment size (bp) References

rrs-rr1A IGS for Borrelia spp. BF1 GTATGTTTAGTGAGGGGGGTG Various [19]
BR1 GGATCATAGCTCAGGTGGTTAG
BF2 AGGGGGGTGAAGTCGTAACAAG
BR2 GTCTGATAAACCTGAGGTCGGA

gltA for Rickettsia spp. CS2d ATGACCAATGAAAATAATAAT 381 bp [20]
CSEndr CTTATACTCTCTATGTACA
RpCS877p GGGGACCTGCTCACGGCGG
RpCS1258n ATTGCAAAAAGTACAGTGAACA

16S rRNA for Anaplasma spp./Ehrlichia spp. Ehr1 AACGAACGCTGGCGGCAAGC 524 bp [21,22]
Ehr2 AGTAYCGRACCAGATAGCCGC
Ehr3 TGCATAGGAATCTACCTAGTAG
Ehr4 CTAGGAATTCCGCTATCCTCT
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with a wet paper towel at 37°C for 45 minutes. Slides
were then washed twice in PBS on a shaker for three
minutes and incubated with A/G FITC secondary
conjugate (BioVision, California, USA) diluted 1:100
for R. rickettsii and 1:200 for A. phagocytophilum at
37°C for 45 minutes. Slides were washed for 3 minutes
in PBS on a shaker and stained with three drops of
Erichrome T-Black (Sigma-Aldrich, St. Louis, MO,
USA) for 3 minutes. Slides were dried and evaluated
using a fluorescent microscope. Shiny green cytoplas-
mic inclusion bodies, or a ‘starry night’ array, were
considered positive for antibodies in serum sample
against Rickettsia and Anaplasma antigen [11].

Results

A total of 64 small mammals were captured in twelve
locations across three northern aimags. Vegetation
differed slightly among sites with lower vegetation
in Darkhan-Uul sites in comparison to Selenge and
Tuv aimag (Table 2). Elevation varied the most
between aimags with the highest elevation in Tuv
aimag and the lowest elevation in Darkhan-Uul
aimag (Table 2).

Six species of animal were captured including 21
Mongolian gerbils (Meriones unguiculatus), 19
ground squirrels (Spermophilus spp.), 17 striped
dwarf hamsters (Cricetulus barabensis), 4 Siberian

chipmunks (Tamius sibiricus), 2 Daurian pika
(Ochotona dauurica), and one field mouse
(Apodemus spp.). Of the 64 small mammals captured
62 serum samples, 61 ear biopsy samples, and 49
whole blood samples were collected.

PCR active infections

Thirty-five (56.4%) of 62 animals tested were PCR
positive for Borrelia spp. in either whole blood or ear
biopsy tissues of which 11/49 (22.4%) whole blood
samples and 29/69 (47.5%) ear biopsy samples were
positive for Borrelia spp. and five animals were posi-
tive in both whole blood and ear biopsy samples.
Fourteen (74%) of 19 ground squirrels, 10 (59%) of
17 striped dwarf hamsters, 10 (50%) of 20 Mongolian
gerbils, and one (25%) of four Siberian chipmunks
were PCR-positive for Borrelia spp. The highest pre-
valence of Borrelia spp. was found in animals cap-
tured in Tuv aimag (75% among 16 animals),
followed by Darkhan-Uul aimag (64% among 11 ani-
mals), and Selenge aimag (46% among 35 individual
animals) (Table 3).

Nineteen (39%) of 49 whole blood samples were
PCR-positive for Rickettsia spp., of these 17/18
(94.4%) were from Mongolian gerbils, 1/11 (9.1%)
from striped dwarf hamsters, and 1/17 (5.9%) from
ground squirrels. Animals captured in Tuv aimag had
the highest prevalence of Rickettsia spp. (60% among
10 animals), followed by Selenge aimag (34% among
29 animals) and Darkhan-Uul aimag (30% among 10
animals) (Table 3). No samples tested positive by
PCR for Anaplasma spp./Ehrlichia spp.

Seropositivity of tick-borne pathogens in small
mammals

Evidence of previous infection of Rickettsia spp. was
detected in serum of 15 (24.2%) of 62 animals con-
sisting of 6 (30%) of 20 Mongolian gerbils, 1 (25%) of

Table 2. Landscape variables in Darkhan-Uul, Selenge and
Tuv aimags. Data on mean elevation, minimum land surface
temperature and maximum normalized density vegetation
index was collected over a period of four years as previously
described [22].

Aimag

Mean
Elevation
Above Sea

Level

Minimum Land
Surface

Temperature
(°C)

Maximum
Normalized
Density

Vegetation Index

Darkhan-Uul 788.14 −21.5 1637
Selenge (north) 832.97 −25.6 1799
Selenge (south) 942.98 −22.1 1827
Tuv 1343.72 −18.7 1730

Table 3. Summary of molecular and serological results by location and small mammal species.
PCR Positive (%) Seropositivity (%)

Aimag Species Borrelia spp.a Rickettsia spp. Anaplasma spp./Ehrlichia spp. A. phagocytophilum R. rickettsii

Darkhan-Uul Ground squirrel 83.3% (5/6) 0.0% (0/6) 0.0% (0/6) 66.7% (4/6) 0.0% (0/6)
Striped dwarf hamster 100% (1/1) – – 100.0% (1/1) 0.0% (0/1)
Mongolian gerbil 25.0% (1/4) 75.0% (3/4) 0.0% (0/4) 50.0% (2/4) 50.0% (2/4)
Total Darkhan-Uul 63.6% 30.0% 0.0% 63.6% (7/11) 18.2% (2/5)

Selenge Mongolian gerbil 25.0% (2/8) 100.0% (8/8) 0.0% (0/8) 25.0% (2/8) 25.0% (2/8)
Ground squirrel 66.7% (6/9) 14.3% (1/7) 0.0% (0/7) 22.2% (2/9) 22.2% (2/9)
Striped dwarf hamster 50.0% (7/14) 9.1% (1/11) 0.0% (0/11) 50.0% (7/14) 28.6% (4/14)
Siberian chipmunk 25.0% (1/4) 0.0% (0/3) 0.0% (0/3) 50.0% (2/4) 25.0% (1/4)
Total Selenge 45.7% 34.5% 0.0% 37.1% (13/35) 25.7% (9/35)

Tuv Ground squirrel 75.0% (3/4) 0.0% (0/4) 0.0% (0/4) 75.0% (3/4) 50.0% (2/4)
Daurian pika 0.0% (0/1) – – 0.0% (0/1) 0.0% (0/1)
Field mouse 0.0% (0/1) – – 0.0% (0/1) 0.0% (0/1)
Mongolian gerbil 87.5% (7/8) 100.0% (6/6) 0.0% (0/6) 12.5% (1/8) 25.0% (2/8)
Striped dwarf hamster 100.0% (2/2) – – 100.0% (2/2) 0.0% (0/2)
Total Tuv 75.0% 60.0% 0.0% 37.5% (6/16) 25.0% (4/16)
Grand Total 56.4% (35/62) 38.8% (19/49) 0.0% (0/49) 41.9% (26/62) 24.2% (15/62)

aIndicates molecular detection in whole blood or ear biopsy samples.
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4 Siberian chipmunks, 4 (23.5%) of 17 striped dwarf
hamsters, and 4 (21.0%) of 19 ground squirrels.
Animals captured in Selenge aimag had the highest
prevalence of previous infection with Rickettsia spp.
(26.0%, 9/35 animals), followed by Tuv aimag (25.0%,
4/16 animals) and Darkhan-Uul aimag (18.0%, 2/11
animals) (Table 3).

Evidence of previous infection with Anaplasma
spp. was present in serum of 26 (41.9%) of 62
serum samples collected (Table 3). Of these, 10
(58.8%) of 17 striped dwarf hamsters, 2 (50%) of 4
Siberian chipmunks, 9 (47.4%) of 19 ground squir-
rels, and 5 (25%) of 20 Mongolian gerbils had anti-
bodies present for Anaplasma spp. Seroprevelance of
Anaplasma spp. was highest in small mammals cap-
tured in Darkhan-Uul aimag (64.0%, 7/11 animals),
followed by Tuv aimag (38.0%, 6/16 animals) and
Selenge aimag (37.0%, 13/35 animals) (Table 3).

Discussion

This report is part of a limited body of research
describing the prevalence of tick-borne pathogens
among small mammal reservoirs in Mongolia.
While speciation of pathogens was not possible in
this pilot study, PCR results suggest that there is a
high prevalence of Borrelia spp. (56.4%) and
Rickettsia spp. (38.8%) in a number of small mammal
species captured in this study. There was also high
geographic distribution of infection of Borrelia spp.
(46.0–75%) and Rickettsia spp. (30–60%). There was
no molecular evidence of Anaplasma spp./Ehrlichia
spp. in any host species, however serum samples
collected had a high antibody response to A. phago-
cytophilum (41.9%).

Small mammals as competent reservoirs of tick-
borne pathogens

Prior studies identified a high prevalence of Borrelia
spp. in I. pursulcatus ticks in Selenge aimag further
providing evidence that rodents likely harbor Borrelia
spp. in northern Mongolia [9,10]. While Dermacentor
spp. was the only tick species identified on animals
captured during this study, I. persculcatus ticks were
present in these sampled areas suggesting that
Borrelia spp. were also likely present in animal reser-
voirs captured [3]. The most common strains of
Borrelia spp. circulating in Mongolia are B. afzelii,
B. bavariensis and B. garinii [9,10], all of which are
reservoired in rodents and are commonly found to
transmit to humans. B. garinii in particular has been
identifed in hamster [13,27] and sibirian chipmunk
species [26] in neighborhing China. While ground
squirrels and Mongolian gerbils have not been iden-
tified as hosts of Borrelia in Mongolia’s neighborhing
countries, research out of the United States has found

California gray squirrels as competant reservoirs for
Borrelia spp. [28] and Mongolian gerbils have histori-
cally been used in experimental studies as reservoirs
for Borrelia spp. [29,30] suggesting that they too
could be competant reservoirs.

Prior studies found a large variation of prevalence
of infection of Rickettsia spp. in ticks ranging from
12.5% to 97.0% in northern Mongolia [5,14,31].
Rickettsia raoultii is the dominant SFGR species cir-
culating in D. nuttalii ticks in northern Mongolia
with prevalence ranging between 66 and 97.0%
[5,12] suggesting that Rickettsia raoultii could be
circulating in small mammals captured in this study.
In our study, Mongolian gerbils had a very high
prevalence of Rickettsia spp. in comparison to other
small mammal species. While we could not find sup-
porting evidence for spotted fever group rickettsiosis
(SFGR) circulating in Mongolian gerbils in surround-
ing regions, they have been known to reservoir SFGR
in other parts of the world [32]. Other rodents have
also been found to reservoir SFGR in China, suggest-
ing that our rodent population could be reservoiring
SFGR [16]. However, due to financial constraints and
time we were not able to sequence samples and there-
fore it is likely that we are detecting other rickettsial
species such as scrub typhus, Orientia tsutsugamushi,
which has been identified in Inner Mongolia and is
known to circulate in small mammals [2]. Therefore,
we cannot definitively say that SFGR is circulating in
the population but suggest that further research is
warranted to assess this question further as SFGR is
highly prevalent in ticks in this area.

While we did not identify any molecular evidence
of Anaplasma spp./Ehrlichia spp. in reservoir hosts
we found a high response to antibody response to A.
phagocytophilum. Previous studies in the United
Kingdom found that prevalence rates in rodents was
highly seasonal and could be linked to peak nymphal
or adult tick seasons [33]. Most of the ticks found on
the rodents captured in this study were larvae which
could be why we don’t see any active infections in
captured rodents but did see antibody responses to A.
phagocytophilum. Anaplasma spp. has also been
shown to have variable durations of infection with
some rodent species having longer persistence of
infection than others [33]. This could in part be due
to their immunity to infection or other attributes
such as size of rodent. For example, it is thought
that older animals may have a higher immunity to
infection in comparison to juveniles [33,34].
Alternatively, larger rodents might be more suscepti-
ble to infection based on the mere fact that they can
sustain a larger population of ticks and hence are
more likely to become infected. Previous reports
regarding the prevalence of Anaplasma spp. in
Mongolia have also found similarly low prevalence
in ticks suggesting that Anaplasma spp. may not be
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highly prevalent in small mammals in this area or it is
highly seasonal [4,9,35]. In regards to reservoir com-
petence, striped dwarf hamsters, Siberian chipmunks
and ground squirrels had a high seroprevalence of A.
phagocytophilum, similar studies in China found that
gerbils and Siberian chipmunks were adequate hosts
for A. phagocytophilum [13,16]. In the United States,
Spermophilus spp. are similarly competent reservoir
hosts for A. phagocytophilum [36] suggesting that
they too could sustain transmission of Anaplasma
spp. in our study area.

Implications of tick-borne pathogens on humans
and domestic animals

Few studies have assessed TBP prevalence among the
Mongolian population and its domestic livestock. The
few studies which have assessed this found Borrelia
spp. in the general population with incidences as high
as 7.8 cases per 100,000 persons per year in Selenge
aimag [10] and seroprevalences of A. phagocytophi-
lum ranging between 2.3 and 37.3% throughout the
country [6,23]. Relatively less is known regarding the
prevalence of SFGR in humans, however case studies
have identified infections of Rickettsia siberica in
international travelers visiting Mongolia and a recent
study found high seroprevalences of SFGR among
humans especially in the northern provinces of
Mongolia [7,8,23].

As a large proportion of the population rely on
herding, the impact of TBPs on domestic livestock
is also of interest given that domestic animals can
contract TBPs [1,13,24,37] and can serve as a
vector for the transfer of infected ticks to humans.
Recent studies of domestic animals in Mongolia
identified antibody responses to B. burgdorferi,
SFGR, and Anaplasma spp. in various domestic
livestock in northern Mongolia [11,23]. These
findings are similar to the seroprevalences of R.
rickettsii (24.2%) and A. phagocytophilum (41.9%)
we found in our small mammal population sug-
gesting that these pathogens are likely shared
between wildlife reservoirs and domestic animals
in this region.

Apart from the seroprevalence of A. phagocyto-
philum, TBP prevalence was highest in small mam-
mals captured in Tuv aimag. Tuv aimag surrounds
the capitol of Mongolia, Ulaanbaatar, and therefore
might have a higher distribution of domestic ani-
mals moving in and out of this region. As domestic
animals play an important role in the tick life cycle
this location may be prime tick habitat potentially
leading to a higher prevalence of TBPs. Further
studies need to address areas such as this where
there is a large influx of humans and animals mov-
ing through this landscape.

Conclusion

This pilot study identified the need to further explore
Borrelia spp. and Rickettsia spp. circulating in small
mammal reservoirs in northern Mongolia. Additional
studies are needed to further assess specific species of
TBPs present in small mammal reservoirs in Mongolia.
Specifically, studies with larger sample sizes are needed,
particularly in areas where small mammal reservoirs,
domestic animals, humans and ticks overlap. Such
studies are necessary to further understand the com-
plexity of tick-borne pathogens in Mongolia.
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